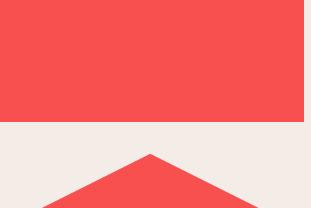
Estimating the impact and cost-effectiveness of RSV interventions on infant health


Clint Pecenka, PhD Director of Health Economics and Outcomes Research

Ranju Baral, PhD Health Economist

Center for Vaccine Innovation and Access

ASVAC Myanmar September 14, 2019

1 Background

2

3

5

- Objective and methods
 - Key data inputs and assumptions Results and key limitations
 - Conclusions

Background

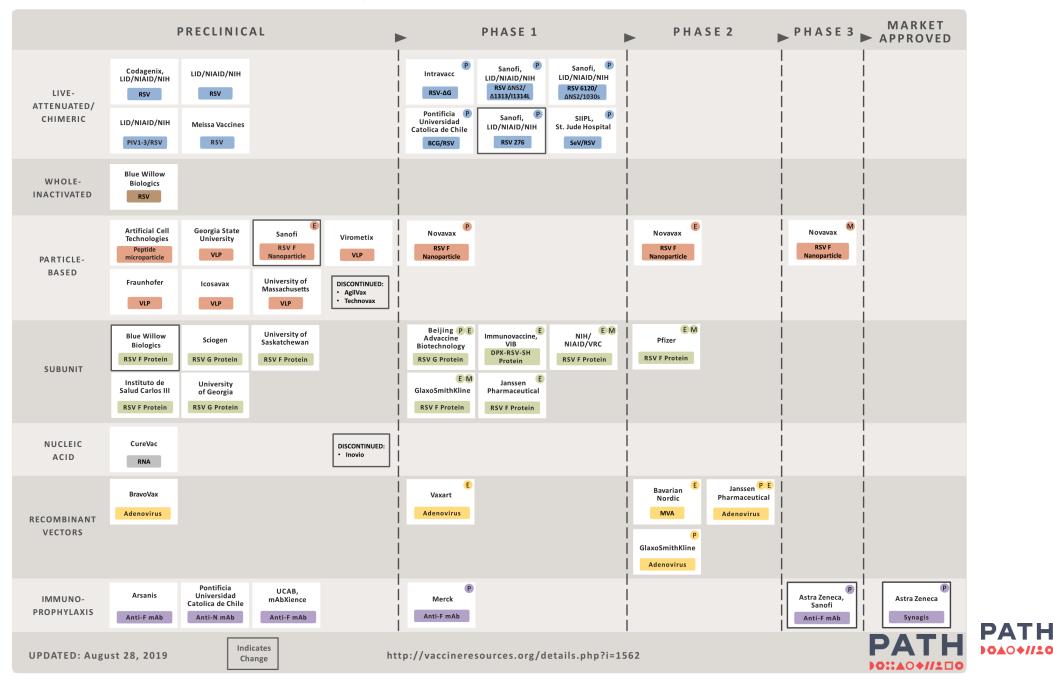
Respiratory syncytial virus (RSV) has a large morbidity and mortality burden

RSV interventions under development

- RSV maternal vaccines
- RSV monoclonal antibodies (mAbs)

RSV interventions, once available, are expected to be included in Gavi, the Vaccine Alliance's portfolio

Interventions are anticipated to be available in non-Gavi low- and middle-income countries (LMICs)


Impact and cost-effectiveness modelling can inform the value of RSV interventions for global and country decision makers

RSV Vaccine and mAb Snapshot

TARGET INDICATION: P = PEDIATRIC M = MATERNAL E = ELDERLY

1 Background

2

3

5

Objective and methods

Key data inputs and assumptions Results and key limitations

Conclusions

Objective

Estimate the impact and cost-effectiveness of using RSV maternal immunization and/or mAbs to protect young infants from severe RSV disease across LMICs

• Highlight results from Asia

Methods overview

Static population-based cohort model

Examine benefits of RSV maternal vaccine or mAb to impact newborn health

- Explore vaccine efficacy against RSV end points
- Explore vaccine efficacy against all cause LRTI, as demonstrated in recent trial

Comparator is no intervention

Key outcomes include averted cases, hospitalizations, deaths, DALYs, cost/DALY

Includes 131 LMICs

Time period: 2030-2039

Assumes national introduction in all countries in 2030

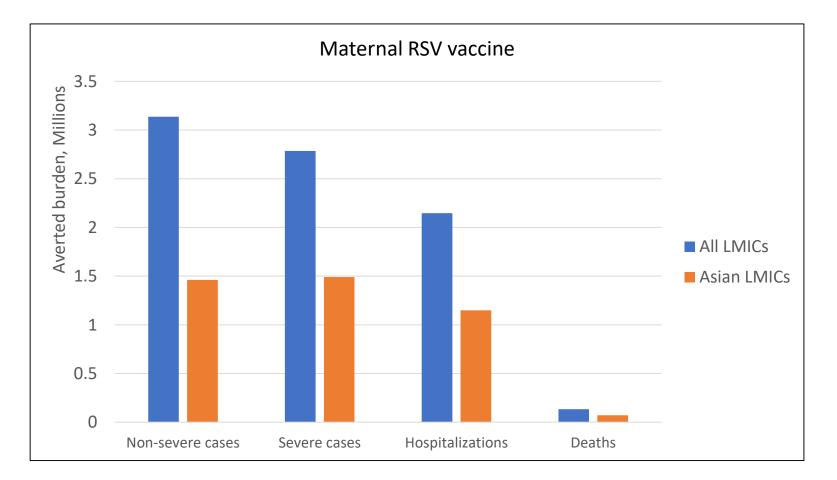
Perspective: Health system perspective, though excludes Gavi subsidy for eligible countries

Costs presented in 2016 USD

 Background
 Objective and methods
 Key data inputs and assumptions Results and key limitations
 Conclusions

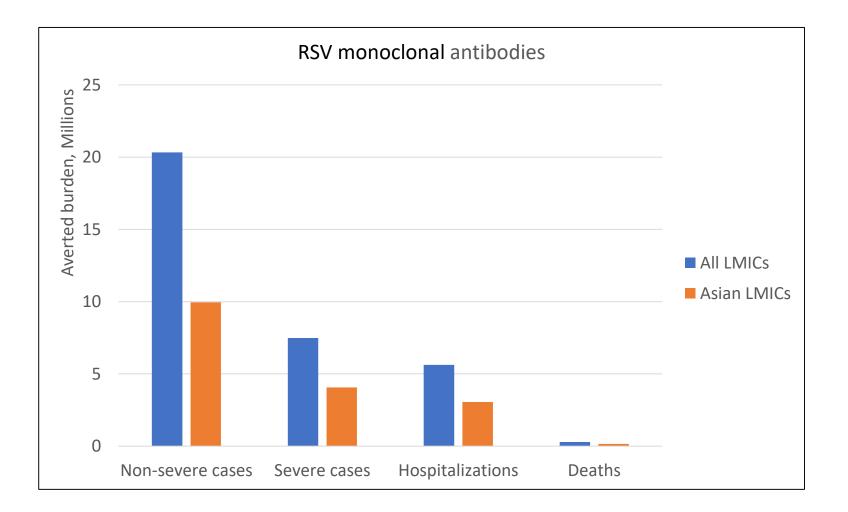
Key data inputs and assumptions

Inputs	Vaccine	mAb	Sources
Efficacy against RSV (%)	Cases (41%); Hospitalizations (42%); Deaths (60%)	Cases (60%); Hospitalizations (60%); Deaths (70%)	PREPARE Phase 3 trial (expanded results), expert opinion
Duration of protection against RSV	3-months	6-months	PREPARE Phase 3 trial (expanded results), expert opinion
Efficacy against all lower respiratory tract infections (LRTI)	Cases (25%); Hospitalizations (25%); Deaths (39%)	Cases (25%); Hospitalizations (25%); Deaths (39%)	PREPARE Phase 3 trial (expanded results), expert opinion
Duration of protection against all LRTI	6-months	6-months	PREPARE Phase 3 trial (expanded results), expert opinion
Vaccination window	24-36 weeks of gestation for maternal vaccine	Not applicable	Expert opinion
Intervention coverage	Derived from antenatal care coverage (Range in 40%-96%, in year 2030)	BCG coverage (Range in 74%-99%, in year 2030)	Demographic and Health Surveys

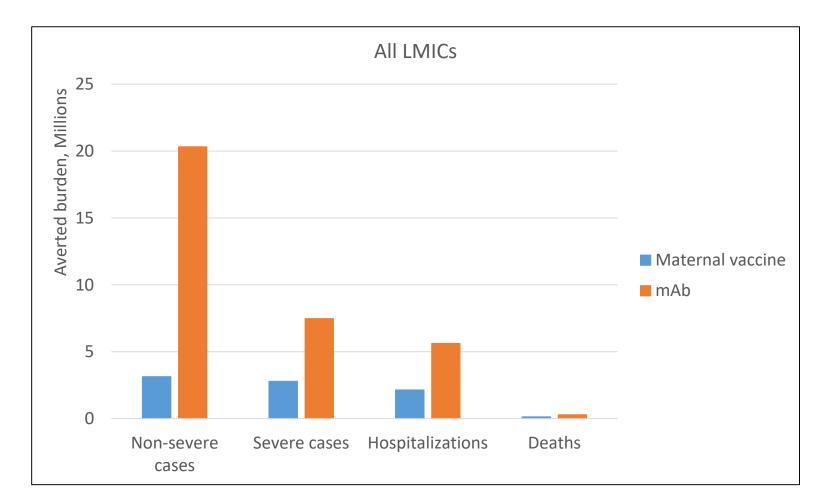

Key data inputs and assumptions

Inputs	Value	Source
Disease burden (RSV-acute lower respiratory infection [ALRI])	Global, regional, and national level estimates	Shi et al., 2017 (Lancet)
Disease burden (all cause-ALRI)	National level estimates	IHME, GBD 2017
Intervention pricing	\$3 per dose in Gavi countries \$5 per dose in non-Gavi countries	Assumed
Intervention delivery costs for maternal vaccine and mAb	\$0.63 (low-income country); \$1.73 (middle-income country)	Immunization Delivery Cost Catalogue (ICAN)

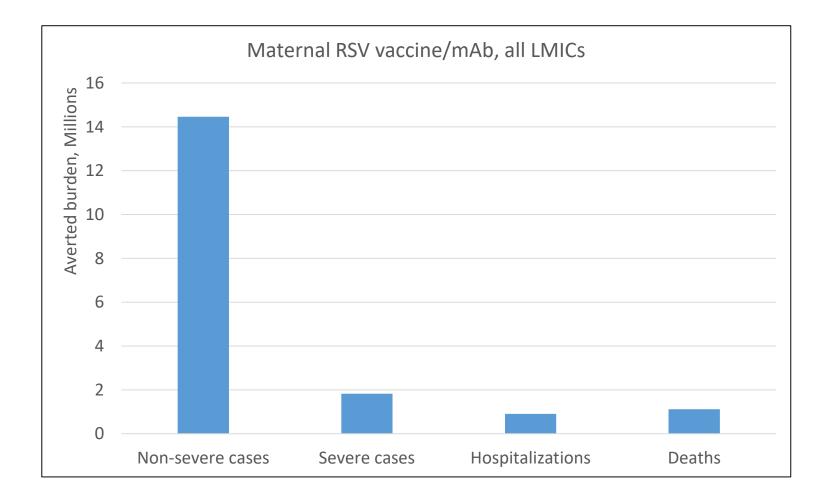
 Background
 Objective and methods
 Key data inputs and assumptions Results and key limitations
 Conclusions


RSV burden averted, (2030-2039)

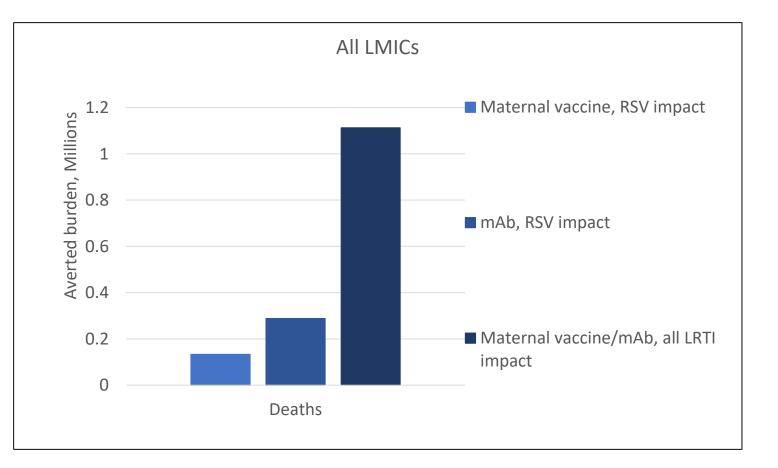
- A maternal RSV vaccine is projected to avert millions of RSV cases and hospitalizations; more than 130k deaths.
- Approximately half of the projected impact of a maternal RSV vaccine is in Asia.


RSV burden averted, (2030-2039)

- A mAb is projected to avert millions of RSV cases, hospitalizations, and nearly 300k deaths.
- Approximately half of the projected impact is in Asia.


RSV burden averted, (2030-2039)

A mAb could be more than two times as impactful on RSV disease as a maternal vaccine due to higher expected coverage, efficacy and longer duration of protection.


All cause LRTI burden averted, (2030-2039)

Maternal RSV vaccines and mAbs have been shown to avert substantial all cause LRTI burden millions of severe cases, hospitalizations and deaths.

RSV and all LRTI deaths averted, (2030-2039)

- All LRTI mortality impact may be much larger than RSV mortality impact!
- All LRTI mortality impact demonstrated by maternal vaccine and mAbs.
 - If maternal vaccines and mAbs perform similarly against all LRTI mortality, overall health impact may be similar between the interventions.

Context on cost effectiveness interpretation

Historically, income per capita thresholds were used to determine cost effectiveness at the country level

- < 1X income per capita was highly cost effective
- < 3X income per capita was cost effective
- > 3X income per capita was not cost effective

Historical thresholds are no longer recommended

Country specific thresholds are recommended but often do not exist in practice

In the absence of a country specific threshold, new (interim?) norms seem to be evolving ~ 0.5X – 1X income per capita

• For example, a cost per disability-adjusted life-year (DALY) of 0.5X income per capita would likely be viewed by many as cost effective.

Incremental cost effectiveness ratios per DALY (discounted)

Intervention	Gavi countries	Non-Gavi countries	Countries in Asia
Maternal vaccine			
(impact on RSV)	1,042	1,626	1,275
mAb (impact on RSV)			
	296	579	422
Maternal vaccine or mAb (impact on all cause LRTI)			
(Impact on an cause LNT)	89	733	697

<u>Results exclude any co-financing to Gavi-eligible countries</u>.

Percent of countries where RSV interventions are likely to be cost effective

Intervention	Gavi countries	Non-Gavi countries
Maternal vaccine (<i>impact on RSV</i>)	NA; Gavi co-financing excluded	88%
mAb (<i>impact on RSV</i>)	NA; Gavi co-financing excluded	100%
Maternal vaccine or monoclonal antibody (<i>impact on all cause LRTI</i>)	NA; Gavi co-financing excluded	100%

*Assumes cost effectiveness threshold < 50% GDP p.c.

Key limitations

Knowledge and awareness of RSV disease burden is still growing.

The age distribution of all-cause LRTI is not well established in the model.

mAb efficacy and duration of protection are not yet firmly established.

Intervention prices are uncertain, and not differentiated by product.

• Some anticipate that mAb prices will be higher.

Country specific cost effectiveness thresholds are not known, so a conservative (but uniform) threshold is applied.

1 Background

2

3

5

- Objective and methods
- Key data inputs and assumptions
 - Results and key limitations

Conclusions

Conclusions

RSV interventions are in development and expected to be available in the coming years.

RSV interventions are projected to be highly impactful, with as much as 50% of the potential impact in Asia.

A mAb is projected to avert more <u>RSV disease</u> than a maternal vaccine due to higher coverage, efficacy, and a longer duration of protection.

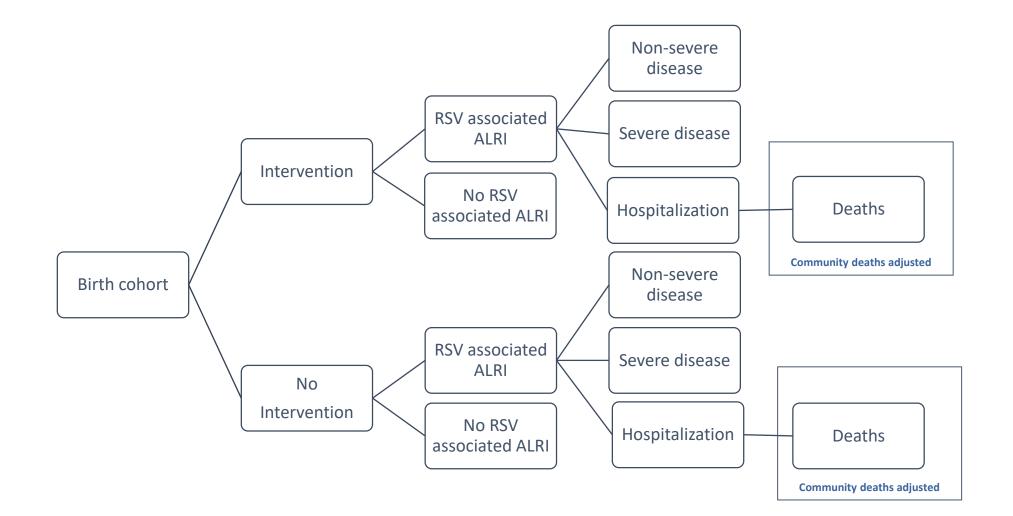
Interventions have already demonstrated ability to avert substantial all-cause LRTI.

- All-cause LRTI reductions could be substantially larger than RSV reductions alone.
- Maternal vaccines and mAbs could have similar overall health impact.

RSV interventions are likely to be cost effective in most LMICs, including in Asia, though much depends on intervention pricing.

For more information contact:

Clint Pecenka cpecenka@path.org


Ranju Baral rbaral@path.org

Backup slides

Model structure

This schematic is specific to scenarios examining RSV end points. The model for LRTI endpoints is similar.

RSV burden <6 months of age, without vaccination (2030-2039)

Country group	Non-sev. Cases	Severe cases	Hosp. Adm.	Total deaths
All countries (N=131)	41,946,625	15,282,497	11,489,765	504,963
Asia (N=28)	17,521,126	7,116,824	5,350,607	235,153

All cause LRTI burden <6 months of age, without vaccination (2030-2039)

Country group	Non-sev. Cases	Severe cases	Hosp. Adm.	Total deaths
All countries (N=131)	70,451,672	8,885,796	4,395,313	3,700,737
Asia (N=28)	35,546,669	4,483,364	2,228,191	1,425,864

Data inputs and assumptions

Inputs	Value	Source
Treatment cost	Total cost per episode for managing severe pneumonia in LMIC: Outpatients \$53; Inpatient \$250	Zhang et al., 2016
Duration of illness	Severe illness: 10 days Non-severe illness: 5 days	Hall et al., 2011
Length of hospital stay	Length of hospital stay for severe pneumonia in LMICs: 6.4 days	Zhang et al., 2016
Health care seeking	Health seeking for children (<5) with pneumonia	WHO database
DALY weight	Severe ALRI: 0.21 Non-severe ALRI: 0.053	GBD 2010
DALY discount rate	3%	Assumed
Population	 UN population estimates (medium variant) Adjusted for still births Assumed uniform age distribution across months 	UN Pop 2019 Lawn et.al., 2016
Life expectancy at birth	• By country, year	UN POP projections, 2019

Data inputs and assumptions – disease burden

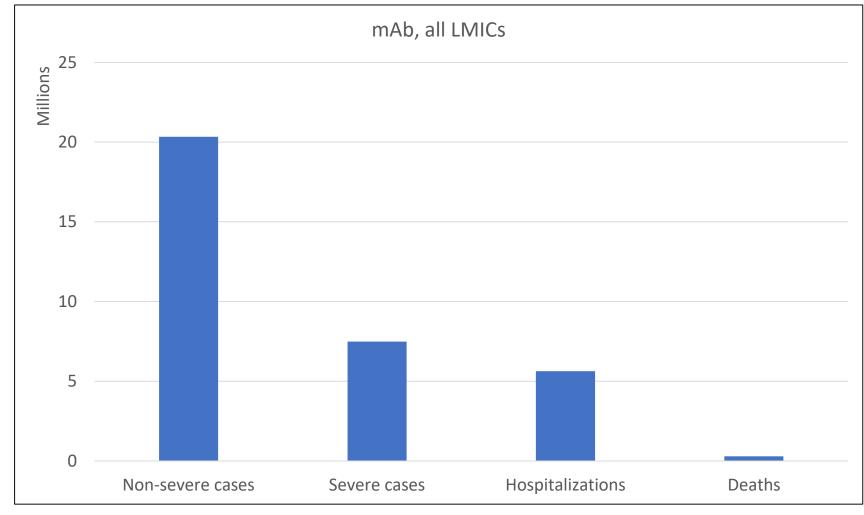
Inputs	Value	Source
Incidence of RSV-ALRI	 Country specific incidence for 0-5 years for envelope Developing country estimate by narrow age band for case distribution by age Rescaled to match country specific incidence envelope 	Shi et.al., 2017
Incidence of severe RSV-ALRI; hospitalization; case fatality rate	Developing country estimates with uniform age distribution	Shi et.al., 2017
RSV-ALRI mortality	 Hospital deaths *2.2 (adjusted for community deaths) *0.9 (adjusted for influenza activities) 	Shi et. al., 2017
Incidence of LRTI	 Country specific By ages- early neonates (0-7days), post neonates (7-28days), late neonates (1-12 months). Burden for post neonates uniformly distributed across ages by month. 	GBD 2017
Incidence of severe LRTI	• 11.5% of all incidence resulting in severe cases	Assumed (based on the estimates used in Rudan et al., 2013)
Hospital admission for LRTI	• 40% of all severe cases resulting in hospital admission	Assumption
Mortality due to LRTI	 Country specific, early neonates, post neonates, late neonates. Burden for post neonates uniformly distributed across ages by month. 	GBD 2017
Age distribution of LRTI burden	Assumes uniform distribution of burden across months by age	Assumption

Projected RSV burden averted <6 months of age, (2030-2039)

	Country group	Non-sev. Cases	Severe cases	Hosp. Adm.	Total deaths
Maternal Vaccine	All countries (N=131)	3,136,827 (7%)*	2,785,082 (18%)	2,146,635 (19%)	133,646 (26%)
	Asia (N=28)	1,461,770 (8%)	1,490,606 (21%)	1,148,903 (21%)	71,529 (30%)

Projected RSV burden averted <6 months of age, (2030-2039)

Monoclonal antibody


Country group	Non-sev. Cases	Severe cases	Hosp. Adm.	Total deaths
All countries (N=131)	20,328,954 (48%)*	7,483,101 (49%)	5,625,983 (49%)	288,465 (57%)
Asia (N=28)	9,952,740 (57%)	4,063,751 (57%)	3,055,230 (57%)	156,653 (57%)

All cause LRTI burden averted <6 months of age, (2030-2039)

Maternal Vaccine or mAb

Country group	Non-sev. Cases	Severe cases	Hosp. Adm.	Total deaths
All countries (N=131)	14,462,195 (21%)*	1,824,061 (21%)	903,089 (21%)	1,112,802 (30%)
Asia (N=28)	7,265,971 (20%)	916,429 (20%)	455,809 (20%)	428,599 (30%)

Projected RSV burden averted <6 months of age, (2030-2039)

PATH is a global team of innovators working to eliminate health inequities so people, communities, and economies can thrive. Specializing in designing, developing, and scaling solutions in five core areas:

Vaccines Diagnostics Drugs **Devices** Health systems

.....

.....

